程序员子龙(Java面试 + Java学习) 程序员子龙(Java面试 + Java学习)
首页
学习指南
工具
开源项目
技术书籍

程序员子龙

Java 开发从业者
首页
学习指南
工具
开源项目
技术书籍
  • 基础

  • JVM

  • Spring

  • 并发编程

  • Mybatis

  • 网络编程

  • 数据库

  • 缓存

    • Redis

      • Redis基础知识
      • redis底层数据结构
      • 发布和订阅
      • 分分钟搞懂布隆过滤器,亿级数据过滤算法你值得拥有!
      • 缓存和数据库一致性解决方案
      • 详解redis的bitmap
      • 面试常问使用缓存出现的问题
      • Redis hot key 发现以及解决办法
      • Redis实现排行榜功能实战
      • Redis 管道技术——Pipeline
      • 11、RedisTemplate使用最详解(一)--- opsForValue()
      • RedisTemplate使用最详解(二)--- opsForList()
      • RedisTemplate使用最详解(三)--- opsForHash()
      • RedisTemplate使用最详解(四)--- opsForSet()
      • RedisTemplate使用最详解(五)--- opsForZSet()
      • Redis分布式锁-这一篇全了解(Redission实现分布式锁完美方案)
      • 建议收藏!看完全面掌握,最详细的Redis总结
      • Redis分布式锁-这一篇就够了
      • 《进大厂系列》系列-Redis常见面试题
        • 缓存有哪些类型?
        • 本地缓存
        • 分布式缓存
        • 多级缓存
        • 淘汰策略
        • Redis数据类型
          • String
          • Hash
          • List
          • Set
          • Sorted Set
          • Bitmap
          • HyperLogLog
          • Geospatial
          • pub/sub
          • Pipeline
          • Lua
        • 事务
        • 持久化
        • 高可用
          • 哨兵
          • 主从
        • 内存驱逐策略(Eviction policies)
        • key失效机制
          • 被动方式
          • 主动方式
    • 本地缓存

  • 设计模式

  • 分布式

  • 高并发

  • SpringBoot

  • SpringCloudAlibaba

  • Nginx

  • 面试

  • 生产问题

  • 系统设计

  • 消息中间件

  • Java
  • 缓存
  • Redis
程序员子龙
2024-04-10
目录

《进大厂系列》系列-Redis常见面试题

# 缓存知识点

# 缓存有哪些类型?

缓存是高并发场景下提高热点数据访问性能的一个有效手段,在开发项目时会经常使用到。

缓存的类型分为:本地缓存、分布式缓存和多级缓存。

# 本地缓存

本地缓存就是在进程的内存中进行缓存,比如我们的 JVM 堆中,Guava Cache、Caffeine、Encache。

# 分布式缓存

分布式缓存可以很好得解决这个问题。

分布式缓存一般都具有良好的水平扩展能力,对较大数据量的场景也能应付自如。缺点就是需要进行远程请求,性能不如本地缓存。

# 多级缓存

为了平衡这种情况,实际业务中一般采用多级缓存,本地缓存只保存访问频率最高的部分热点数据,其他的热点数据放在分布式缓存中。

在目前的一线大厂中,这也是最常用的缓存方案,单考单一的缓存方案往往难以撑住很多高并发的场景。

# 淘汰策略

不管是本地缓存还是分布式缓存,为了保证较高性能,都是使用内存来保存数据,由于成本和内存限制,当存储的数据超过缓存容量时,需要对缓存的数据进行剔除。

一般的剔除策略有 FIFO 淘汰最早数据、LRU 剔除最近最少使用、和 LFU 剔除最近使用频率最低的数据几种策略。

  • noeviction:返回错误当内存限制达到并且客户端尝试执行会让更多内存被使用的命令(大部分的写入指令,但DEL和几个例外)
  • allkeys-lru: 尝试回收最少使用的键(LRU),使得新添加的数据有空间存放。
  • volatile-lru: 尝试回收最少使用的键(LRU),但仅限于在过期集合的键,使得新添加的数据有空间存放。
  • allkeys-random: 回收随机的键使得新添加的数据有空间存放。
  • volatile-random: 回收随机的键使得新添加的数据有空间存放,但仅限于在过期集合的键。
  • volatile-ttl: 回收在过期集合的键,并且优先回收存活时间(TTL)较短的键,使得新添加的数据有空间存放。

如果没有键满足回收的前提条件的话,策略volatile-lru, volatile-random以及volatile-ttl就和noeviction 差不多了。

LinkedHashMap中也实现LRU算法 (opens new window)

# Redis

先简单说一下 Redis 的特点,方便和 MC 比较。

  • 与 MC 不同的是,Redis 采用单线程模式处理请求。这样做的原因有 2 个:一个是因为采用了非阻塞的异步事件处理机制;另一个是缓存数据都是内存操作 IO 时间不会太长,单线程可以避免线程上下文切换产生的代价。
  • Redis 支持持久化,所以 Redis 不仅仅可以用作缓存,也可以用作 NoSQL 数据库。
  • 相比 MC,Redis 还有一个非常大的优势,就是除了 K-V 之外,还支持多种数据格式,例如 list、set、sorted set、hash 等。
  • Redis 提供主从同步机制,以及 Cluster 集群部署能力,能够提供高可用服务。

Redis 的知识点结构如下图所示:

# Redis数据类型

# String

String 类型是 Redis 中最常使用的类型,内部的实现是通过 SDS(Simple Dynamic String )来存储的。SDS 类似于 Java 中的 ArrayList,可以通过预分配冗余空间的方式来减少内存的频繁分配。

这是最简单的类型,就是普通的 set 和 get,做简单的 KV 缓存。

但是真实的开发环境中,很多仔可能会把很多比较复杂的结构也统一转成String去存储使用,比如有的仔他就喜欢把对象或者List转换为JSONString进行存储,拿出来再反序列话啥的。

String的实际应用场景比较广泛的有:

  • 缓存功能:String字符串是最常用的数据类型,不仅仅是Redis,各个语言都是最基本类型,因此,利用Redis作为缓存,配合其它数据库作为存储层,利用Redis支持高并发的特点,可以大大加快系统的读写速度、以及降低后端数据库的压力。
  • 计数器:许多系统都会使用Redis作为系统的实时计数器,可以快速实现计数和查询的功能。而且最终的数据结果可以按照特定的时间落地到数据库或者其它存储介质当中进行永久保存。
  • 共享用户Session:用户重新刷新一次界面,可能需要访问一下数据进行重新登录,或者访问页面缓存Cookie,但是可以利用Redis将用户的Session集中管理,在这种模式只需要保证Redis的高可用,每次用户Session的更新和获取都可以快速完成。大大提高效率。

# Hash

这个是类似 Map 的一种结构,这个一般就是可以将结构化的数据,比如一个对象(前提是这个对象没嵌套其他的对象)给缓存在 Redis 里,然后每次读写缓存的时候,可以就操作 Hash 里的某个字段。

# List

List 是有序列表,这个还是可以玩儿出很多花样的。

比如可以通过 List 存储一些列表型的数据结构,类似粉丝列表、文章的评论列表之类的东西。

比如可以通过 lrange 命令,读取某个闭区间内的元素,可以基于 List 实现分页查询,这个是很棒的一个功能,基于 Redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西,性能高,就一页一页走。

比如可以搞个简单的消息队列,从 List 头怼进去,从 List 屁股那里弄出来。

List本身就是我们在开发过程中比较常用的数据结构了,热点数据更不用说了。

  • 消息队列:Redis的链表结构,可以轻松实现阻塞队列,可以使用左进右出的命令组成来完成队列的设计。比如:数据的生产者可以通过Lpush命令从左边插入数据,多个数据消费者,可以使用BRpop命令阻塞的“抢”列表尾部的数据。
  • 文章列表或者数据分页展示的应用。

比如,我们常用的博客网站的文章列表,当用户量越来越多时,而且每一个用户都有自己的文章列表,而且当文章多时,都需要分页展示,这时可以考虑使用Redis的列表,列表不但有序同时还支持按照范围内获取元素,可以完美解决分页查询功能。大大提高查询效率。

# Set

Set 是无序集合,会自动去重的那种。

直接基于 Set 将系统里需要去重的数据扔进去,自动就给去重了,如果你需要对一些数据进行快速的全局去重,你当然也可以基于 JVM 内存里的 HashSet 进行去重,但是如果你的某个系统部署在多台机器上呢?得基于Redis进行全局的 Set 去重。

可以基于 Set 玩儿交集、并集、差集的操作,比如交集吧,我们可以把两个人的好友列表整一个交集,看看俩人的共同好友是谁?对吧。

# Sorted Set

Sorted set 是排序的 Set,去重但可以排序,写进去的时候给一个分数,自动根据分数排序。

有序集合的使用场景与集合类似,但是set集合不是自动有序的,而Sorted set可以利用分数进行成员间的排序,而且是插入时就排序好。所以当你需要一个有序且不重复的集合列表时,就可以选择Sorted set数据结构作为选择方案。

  • 排行榜:有序集合经典使用场景。例如视频网站需要对用户上传的视频做排行榜,榜单维护可能是多方面:按照时间、按照播放量、按照获得的赞数等。
  • 用Sorted Sets来做带权重的队列,比如普通消息的score为1,重要消息的score为2,然后工作线程可以选择按score的倒序来获取工作任务。让重要的任务优先执行。

# Bitmap

位图是支持按 bit 位来存储信息,可以用来实现 布隆过滤器(BloomFilter);

# HyperLogLog

供不精确的去重计数功能,比较适合用来做大规模数据的去重统计,例如统计 UV;

# Geospatial

可以用来保存地理位置,并作位置距离计算或者根据半径计算位置等。有没有想过用Redis来实现附近的人?或者计算最优地图路径?

这三个其实也可以算作一种数据结构,不知道还有多少朋友记得,我在梦开始的地方,Redis基础中提到过,你如果只知道五种基础类型那只能拿60分,如果你能讲出高级用法,那就觉得你有点东西。

# pub/sub

功能是订阅发布功能,可以用作简单的消息队列。

# Pipeline

可以批量执行一组指令,一次性返回全部结果,可以减少频繁的请求应答。

# Lua

Redis 支持提交 Lua 脚本来执行一系列的功能。

我在前电商老东家的时候,秒杀场景经常使用这个东西,讲道理有点香,利用他的原子性。

话说你们想看秒杀的设计么?我记得我面试好像每次都问啊,想看的直接点赞后评论秒杀吧。

# 事务

最后一个功能是事务,但 Redis 提供的不是严格的事务,Redis 只保证串行执行命令,并且能保证全部执行,但是执行命令失败时并不会回滚,而是会继续执行下去。

# 持久化

Redis 提供了 RDB 和 AOF 两种持久化方式,RDB 是把内存中的数据集以快照形式写入磁盘,实际操作是通过 fork 子进程执行,采用二进制压缩存储;AOF 是以文本日志的形式记录 Redis 处理的每一个写入或删除操作。

RDB 把整个 Redis 的数据保存在单一文件中,比较适合用来做灾备,但缺点是快照保存完成之前如果宕机,这段时间的数据将会丢失,另外保存快照时可能导致服务短时间不可用。

AOF 对日志文件的写入操作使用的追加模式,有灵活的同步策略,支持每秒同步、每次修改同步和不同步,缺点就是相同规模的数据集,AOF 要大于 RDB,AOF 在运行效率上往往会慢于 RDB。

# 高可用

来看 Redis 的高可用。Redis 支持主从同步,提供 Cluster 集群部署模式,通过 Sentine l哨兵来监控 Redis 主服务器的状态。当主挂掉时,在从节点中根据一定策略选出新主,并调整其他从 slaveof 到新主。

选主的策略简单来说有三个:

  • slave 的 priority 设置的越低,优先级越高;
  • 同等情况下,slave 复制的数据越多优先级越高;
  • 相同的条件下 runid 越小越容易被选中。

在 Redis 集群中,sentinel 也会进行多实例部署,sentinel 之间通过 Raft 协议来保证自身的高可用。

Redis Cluster 使用分片机制,在内部分为 16384 个 slot 插槽,分布在所有 master 节点上,每个 master 节点负责一部分 slot。数据操作时按 key 做 CRC16 来计算在哪个 slot,由哪个 master 进行处理。数据的冗余是通过 slave 节点来保障。

# 哨兵

哨兵必须用三个实例去保证自己的健壮性的,哨兵+主从并不能保证数据不丢失,但是可以保证集群的高可用。

哨兵组件的主要功能:

  • 集群监控:负责监控 Redis master 和 slave 进程是否正常工作。
  • 消息通知:如果某个 Redis 实例有故障,那么哨兵负责发送消息作为报警通知给管理员。
  • 故障转移:如果 master node 挂掉了,会自动转移到 slave node 上。
  • 配置中心:如果故障转移发生了,通知 client 客户端新的 master 地址。

# 主从

提到这个,就跟我前面提到的数据持久化的RDB和AOF有着比密切的关系了。

我先说下为啥要用主从这样的架构模式,前面提到了单机QPS是有上限的,而且Redis的特性就是必须支撑读高并发的,那你一台机器又读又写,这谁顶得住啊,不当人啊!但是你让这个master机器去写,数据同步给别的slave机器,他们都拿去读,分发掉大量的请求那是不是好很多,而且扩容的时候还可以轻松实现水平扩容。

你启动一台slave 的时候,他会发送一个psync命令给master ,如果是这个slave第一次连接到master,他会触发一个全量复制。master就会启动一个线程,生成RDB快照,还会把新的写请求都缓存在内存中,RDB文件生成后,master会将这个RDB发送给slave的,slave拿到之后做的第一件事情就是写进本地的磁盘,然后加载进内存,然后master会把内存里面缓存的那些新命名都发给slave。

# 内存驱逐策略(Eviction policies)

当达到配置文件最大内存限制的时候,Redis有几种策略来处理这种情况

  • noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)
  • allkeys-lru:从所有key中使用LRU算法进行淘汰
  • volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰
  • allkeys-random:从所有key中随机淘汰数据
  • volatile-random:从设置了过期时间的key中随机淘汰
  • volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰

# key失效机制

redis的Key失效机制有两种:被动方式(passive way)和主动方式(active way)

# 被动方式

当客户端尝试访问key时,如果发现key已经失效了,就删除该key,并且告诉客户端该key已经失效了。

# 主动方式

当然,有被动方式还不够,因为可能会存在一些过期的key却不会被再次访问。

那怎么删除这些key呢,定时遍历整个库吗?这样当然不行,数据量大的时候太过于耗费性能了。

Redis主动删除失效key的策略是:随机抽取一部分的key进行校验,如果已经失效,就删除淘汰。

具体措施

Redis每秒执行以下操作10次:

  1. 在有过期时间的key集合中随机抽取20个key。
  2. 删除所有的过期key
  3. 如果过期的key超过25%,重新执行步骤1
上次更新: 2024/10/09, 22:49:20
Redis分布式锁-这一篇就够了
Java 的高性能缓存库-caffeine!

← Redis分布式锁-这一篇就够了 Java 的高性能缓存库-caffeine!→

最近更新
01
一个注解,优雅的实现接口幂等性
11-17
02
MySQL事务(超详细!!!)
10-14
03
阿里二面:Kafka中如何保证消息的顺序性?这周被问到两次了
10-09
更多文章>
Theme by Vdoing | Copyright © 2024-2024

    辽ICP备2023001503号-2

  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式